Energy Efficiency Lessons and Plans from California

Delhi & Mumbai March 2009

Arthur H. Rosenfeld, Commissioner California Energy Commission (916) 654-4930

ARosenfe@Energy.State.CA.US

http://www.energy.ca.gov/commissioners/rosenfeld.html

or just Google "Art Rosenfeld"

Two Energy Agencies in California

- The California Public Utilities Commission (CPUC) was formed in 1890 to regulate natural monopolies, like railroads, and later electric and gas utilities.
- The California Energy Commission (CEC) was formed in 1974 to regulate the environmental side of energy production and use.
- Now the two agencies work very closely, particularly to delay climate change.
- The Investor-Owned Utilities, under the guidance of the CPUC, spend "Public Goods Charge" money (rate-payer money) to do everything they can that is cost effective to beat existing standards.
- The Publicly-Owned utilities (20% of the power), under loose supervision by the CEC, do the same.

California Energy Commission Responsibilities

Both Regulation and R&D

- California Building and Appliance Standards
 - Started 1977
 - Updated every few years
- Siting Thermal Power Plants Larger than 50 MW
- Forecasting Supply and Demand (electricity and fuels)
- Research and Development
 - ~ \$80 million per year
- CPUC & CEC are collaborating to introduce communicating electric meters and thermostats that are programmable to respond to timedependent electric tariffs.

California's Energy Action Plan

- California's Energy Agencies first adopted an Energy Action Plan in 2003. Central to this is the State's preferred "Loading Order" for resource expansion.
- 1. Energy efficiency and Demand Response
- 2. Renewable Generation,
- 3. Increased development of affordable & reliable conventional generation
- 4. Transmission expansion to support all of California's energy goals.
- The Energy Action Plan has been updated since 2003 and provides overall policy direction to the various state agencies involved with the energy sectors

Per Capita Electricity Sales (not including self-generation) (kWh/person) (2006 to 2008 are forecast data)

Annual Energy Savings from Efficiency Programs and Standards

Per Capita Electricity Sales (not including self-generation) (kWh/person)

Impact of Standards on Efficiency of 3 Appliances

Source: S. Nadel, ACEEE,

in ECEEE 2003 Summer Study, www.eceee.org

New United States Refrigerator Use v. Time

and Retail Prices

Source: David Goldstein

10

Annual Energy Saved vs. Several Sources of Supply In the United States

In the United States
Value of Energy to be Saved (at 8.5 cents/kWh, retail price) vs.
Several Sources of Supply in 2005 (at 3 cents/kWh, wholesale price)

Air Conditioning Energy Use in Single Family Homes in PG&E The effect of AC Standards (SEER) and Title 24 standards

Comparison of 3 Gorges to Refrigerator and AC Efficiency Improvements

三峡电量与电冰箱、空调能效对比

Annual Energy Savings from Efficiency Programs and Standards

California IOU's Investment in Energy Efficiency

White Roofs

Temperature Rise of Various Materials in Sunlight

White is 'cool' in Bermuda

and in Santorini, Greece

and in Hyderabad, India

Cool Roof Technologies

<u>Old</u> <u>New</u>

flat, white

pitched, white

pitched, cool & colored

Cool Colors Reflect Invisible Near-Infrared Sunlight

White Roofs

- In California and a growing number of US states, white roofs are required for new buildings, and re-roofing to reduce air conditioning load and "smog"(O₃).
- But a new concept is that white roofs also cool the world directly.

Effect of Solar Reflective Roofs and Pavements in Cooling the Globe

(Source: Akbari, Menon, Rosenfeld. Climatic Change, 2008)

	∆ Solar Reflectivity	CO ₂ Offset by 100 m ²	CO ₂ Offset Globally		
White Roof	0.40	10 tons			
Average Roof*	0.25	6.3 tons**	24 Gt		
Cool Pavement	0.15	4 tons	20 Gt		
Total Potential			44 Gt		
Value of 44 Gt CO ₂ at \$25/t ~ \$1 Trillion					

^{*} White Roof will be "diluted" by cool colored roofs of lower reflectivity, and roofs that can not be changed, because they are long-lived tile, or perhaps they are already white.

^{}** Compare 10 tons with a family car, which emits ~4 tons/year.

CO₂ Equivalency of Cool Roofs World-wide (Tropics+Temperate)

- Cool Roofs alone offset 24 Gt CO2
- Worth > €600 Billion
- To Convert 24 Gt CO2 one time into a rate
- Assume 20 Year Program, thus
- 1.2 Gt CO2/year
- Average World Car Emits 4 tCO2/year,

equivalent to 300 Million Cars off the Road for 20 years.

Akbari et al. Main Finding

100 m² of a white roof, replacing a dark roof, offset the emission of 10 tons of CO₂

- To be published in Climatic Change 2008.
- Global Cooling: Increasing World-wide Urban Albedos to Offset CO2

July 28, 2008

Hashem Akbari and Surabi Menon

Lawrence Berkeley National

Laboratory, USA

H_Akbari@lbl.gov

Tel: 510-486-4287

Arthur Rosenfeld
California Energy Commission,
USA
Arosenfe@energy.state.ca.us
Tel: 916-654 4930

 A First Step In Geo-Engineering Which Saves Money and Has Known Positive Environmental Impacts

Conservation Supply Curves and Carbon Abatement Curves

PG&E Electric Supply Curve

Source: Itron Inc and KEMA Inc, California Energy Efficiency Potential Study, (Prepared for Pacific Gas and Electric company (September 2008)

PG&E Electric Supply Curve Summary of Previous Slide

- 200 Projects costing at or below 12 cents /kWh average retail price
- Total Potential Savings of 18,000 GWh for these projects
- This represents about 20% of total electric sales for PG&E in 2008

Tooks also	C4	Levelized Supply	Levelized Supply	Technical
Technology	Sector	Cost	Cost with Programs	GWH 2016
S04_0515	INC INC	0	0.005 0.005	4.549 13.356
S01_0515 WWT PDW	INC	0.002	0.003	0.08
CRm_ExOp	INC	0.002	0.007	0.08
CRm_HECh	INC	0.005	0.01	4.52
S36_HEVC	INC	0.005	0.01	0.729
Fans_ASD_(6-100_hp)	Existing Industrial	0.005	0.012	27.33
Comp_Air_ASD_(6-100_hp)	Existing Industrial	0.005	0.012	31.33
Pumps_ASD_(6-100_hp)	Existing Industrial	0.005	0.012	54.46
CRm_UAS	INC	0.005	0.01	3.01
WWT_Des	INC	0.006	0.011	1.83
CRm_POHP	INC	0.006	0.011	1.31
CRm_PrPl	INC	0.006	0.011	3.75
CRm_EfFS	INC	0.006	0.011	2.02
Fans_OM	Existing Industrial	0.006	0.014	11.94
Compressed_AirSizing	Existing Industrial	0.006	0.014	49.29
Pumps_OM	Existing Industrial	0.006	0.014	95.2
C_CFL_Over24W	Existing Commercial	0.007	0.035	305.09
CRm_PACR	INC	0.007	0.012	7.89
Compressed_Air-OM	Existing Industrial	0.008	0.015	172.52
CRm_VACS	INC	0.008	0.013	1.45
S36_ACrS	INC	0.008	0.013	1.16
CRm_LPDF	INC	0.008	0.013	2.43
WWT_VFD	INC	0.008	0.013	12.4
S04_0510	INC	0.008	0.013	0
CRm_PrPm	INC	0.009	0.014	0.42
CRm_PMEV	INC	0.009	0.014	0.3
CRm_PMEW	INC	0.009	0.014	0.21
C_CFL_Under15W	Existing Commercial	0.009	0.04	151.16
C_T12_Delamping_4Ft	Existing Commercial	0.021	0.027	123.76
C_Ref_EvapFan_ECM	Existing Commercial	0.022	0.027	238.21

Electricity Conservation Supply Curve 220 Mesures translated to Carbon Dioxide Reduction curve California in 2011 -- (1 kwh reduction saves 1 pound of CO2)

Reducing U.S. Greenhouse Gas Emissions: How Much at What Cost?

US Greenhouse Gas Abatement Mapping Initiative

December 12, 2007

Source: McKinsey analysis

Global cost curve for greenhouse gas abatement measures beyond 'business as usual'; greenhouse gases measured in GtCO2e1

 Approximate abatement required beyond 'business as usual,' 2030

Possible Strategies to Reduce Electricity Sector Carbon Emissions in California, ignoring ramp up times and other implementation issues -- The ELECTRICITY Perspective

Source: Pat McAuliffe, pmcaulif@energy.state.ca.us

Possible Strategies to Reduce Electricity Sector Carbon Emissions in California, ignoring ramp up times and other implementation issues -- The CARBON Perspective

Source: Pat McAuliffe, pmcaulif@energy.state.ca.us

Backup Slides on Cool Colored Roofs, Pavements and Cars

Solar Reflective Surfaces Also Cool the Globe

Methodology: Energy and Air-Quality Analysis

Cool and Standard Brown Metal Roofing Panels

- Solar reflectance ~ 0.2 higher
- Afternoon surface temperature ~ 10°C lower

Designing Cool Colored Roofing

cool fiberglass asphalt shingle
R ≥0.25
Courtesy
Elk Corporation

Cool is Cool: From Cool Color Roofs to Cool Color Cars and Cool Jackets

Toyota experiment (surface temperature 10K cooler)

Ford is also working on the technology

Courtesy: BMW (http://www.ips-

innovations.com/solar_reflective_clothing.htm)

Cool Paving Materials:

Reflective Pavements are Cooler

Fresh asphalt

Albedo: 0.05

Temperature: 123°F

Aged asphalt

Albedo: 0.15

Temperature: 115°F

Prototype asphalt coating

Albedo: 0.51

Temperature: 88°F

Temperature Effect on Rutting

Source: Dr. John Harvey, UC B Civil Engineering, Inst. Transpo. Studies

Simulated Meteorology and Air-quality Impacts in LA

Potential Savings in LA

- Savings for Los Angeles
 - Direct, \$100M/year
 - Indirect, \$70M/year
 - Smog, \$360M/year
- Estimate of national savings: \$5B/year

